A Feature-Weighted SVR Method Based on Kernel Space Feature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mercer kernel-based clustering in feature space

The article presents a method for both the unsupervised partitioning of a sample of data and the estimation of the possible number of inherent clusters which generate the data. This work exploits the notion that performing a nonlinear data transformation into some high dimensional feature space increases the probability of the linear separability of the patterns within the transformed space and...

متن کامل

Input space versus feature space in kernel-based methods

This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the me...

متن کامل

Gabor Feature Space Diffusion via the Minimal Weighted Area Method

Gabor feature space is elaborated for representation, processing and segmentation of textured images. As a first step of preprocessing of images represented in this space, we introduce an algorithm for Gabor feature space denoising. It is a geometric-based algorithm that applies diffusion-like equation derived from a minimal weighted area functional, introduced previously and applied in the con...

متن کامل

Kernel Penalized K-means: A feature selection method based on Kernel K-means

Article history: Received 11 June 2014 Received in revised form 23 October 2014 Accepted 11 June 2015 Available online 19 June 2015

متن کامل

Feature space locality constraint for kernel based nonlinear discriminant analysis

Subspace learning is an important approach in pattern recognition. Nonlinear discriminant analysis (NDA), due to its capability of describing nonlinear manifold structure of samples, is considered to be more powerful to undertake classification tasks in image related problems. In kernel based NDA representation, there are three spaces involved, i.e., original data space, implicitly mapped high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2018

ISSN: 1999-4893

DOI: 10.3390/a11050062